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EXAMINATION, 2008, B.MATH 2ND YEAR

1 (i) Given that f : U → R is differentiable at x = (a, b) ∈ U ⊆ R2.
Define g : R→ R2 by g(t) = (a+ t, b+ sin t) for all t ∈ R.

Then g(0) = (a, b) = x, g is differentiable at 0 and g′(0) =

[
g′1(0)
g′2(0)

]
=

[
1
1

]
.

Now

lim
h→0

f(a+ h, b+ sinh)− f(a, b)

h
= lim
h→0

f ◦ g(h)− f ◦ g(0)

h

= (f ◦ g)′(0)

= f ′(g(0)) ◦ g′(0) by Chain Rule

= f ′(x) ◦ g′(0)

=
[
D1f(x) D2f(x)

] [g′1(0)
g′2(0)

]
=
[
D1f(x) D2f(x)

] [1
1

]
= D1f(x) +D2f(x)

where Dif(x) is the i th partial derivative of f at x = (a, b)
1 (ii) Let n ≥ 2 and U ⊂ Rn be an open set and f : U → Rn be a C1 map

satisfying ||f(x)|| = 1 for all x ∈ U.
We shall prove that the Jacobian Matrix Df(x) of f at any point x is not
invertible.
Given that ||f(x)||2 = f1(x)2 + f2(x)2 + ...+ fn(x)2 = 1.

⇒ ∂(f1(x)2+f2(x)2+...+fn(x)2)
∂xi

= 0 for all i = 1, 2, ..., n.

⇒ 2f1(x)∂f1(x)
∂xi

+ 2f2(x)∂f2(x)
∂xi

+ ...+ 2fn(x)∂fn(x)
∂xi

= 0 for all i = 1, 2, ..., n.

⇒
[
f1(x) f2(x) ... fn(x)

]

∂f1(x)
∂xi

∂f2(x)
∂xi

...
∂fn(x)
∂xi

 = 0 for all i = 1, 2, ..., n.

⇒
[
f1(x) f2(x) ... fn(x)

]

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

∂f2(x)
∂xi

· · · ∂f2(x)
∂xn

...
. . .

...
∂fn(x)
∂xi

· · · ∂fn(x)
∂xn

 =
[
0 0 · · · 0

]
That is

[
f1(x) f2(x) ... fn(x)

]
Df(x) =

[
0 0 · · · 0

]
1
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⇒ Df(x)T


f1(x)
f2(x)

...
fn(x)

 =


0
0
...
0

 for all x ∈ Rn

Note that ||f(x)|| = 1 implies that f(x) is a non-zero vector for all x ∈ Rn.
Therefore Df(x)T f(x) = 0 implies that Df(x) is not invertible for all
x ∈ Rn.

2 (i) Let n ≥ 2. Define g : Rn−1 → R by

g(y1, y2, ..., yn−1) = f(0, y1, y2, ..., yn−1) for all (y1, y2, ..., yn−1) ∈ Rn−1

Fix (a2, a3, ..., an) ∈ Rn−1 and define h : R→ R by

h(x) = f(x, a2, a3, ..., an) for all x ∈ R.

Then h′(x) = ∂f
∂x1

(x, a2, a3, ..., an) for all x ∈ R, where ∂f
∂xi

is the i th

partial derivative of f. It is given that h′(x) ≡ 0. Therefore by Fundamental
Theorem of Calculus, for all b > a we have

h(b)− h(a) =

b∫
a

h′(x)dx = 0

Thus f(a, a2, a3, ..., an) = h(a) = h(b) = f(b, a2, a3, ..., an) for all a, b ∈ R.
This is true for all fixed (a2, a3, ..., an) ∈ Rn−1. This shows that

g(x2, x3, ..., xn) = f(x1, x2, ..., xn) for all (x1, x2, ..., xn) ∈ Rn.

Now note that ∂g
∂yi

= ∂f
∂xi+1

, where ∂g
∂y1

is the i th partial derivative of g.

Hence clearly g is C1 as f is.
2 (ii) Let n ≥ 2 and f : Rn → R be a C1 function. Then f is continuous on Rn.

Assume that f is injective on Rn.
Then since f is injective and continuous f(Rn) is a non-trivial interval in
R. Let c be an interior point in f(Rn). Then there exists a unique y ∈ Rn
such that f(y) = c. Now note that Rn\{y} is connected and f is continuous
on Rn \ {y}. But f(Rn) \ {c} is disconnected in R. This is a contradiction.
Hence f can not be injective.

3 (i) Let f : [a, b] → R be a bounded monotonically non-decreasing function.
Let x ∈ [a, b]. For h > 0 let

Ωh(f, x) = sup{f(y)− f(z) : y, z ∈ [a, b] ∩ (x− h, x+ h)}

o(f, x) = lim
h→0

Ωh(f, x)

Clearly Ωh(f, x) ≤ Ωh′(f, x) if h ≤ h′ and hence o(f, x) ≤ Ωh(f, x) for all
h > 0. Thus since f is monotonically non-decreasing we can observe the
following for o(f, x):
Case 1: a < x < b.

We have o(f, x) ≤ f(z)− f(y) for any y, z ∈ [a, b] with y < x < z.
Case 2: x = a

We have o(f, x) ≤ f(y)− f(x) for any y with a < y ≤ b
Case 3: x = b

We have o(f, x) ≤ f(b)− f(y) for any y with a ≤ y < b.
Without loss of generality assume that x1 < x2 < ... < xn. Choose ai’s
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such that a = a0 ≤ x1 < a1 < x2 < a2 < x3 < ... < xn ≤ an = b. Therefore
from the above observations o(f, xi) ≤ f(ai)− f(ai−1). Thus

n∑
i=1

o(f, xi) ≤
n∑
i=1

f(ai)− f(ai−1) = f(b)− f(a)

3 (ii ) Let f : [a, b] → R be a bounded monotonically non-decreasing function.
Let Sn := {x ∈ [a, b] : o(f, x) > 1

n}. Using part (i) we can see that Sn is a

finite set. Thus {x ∈ [a, b] : o(f, x) > 0} = ∪n=1
∞ Sn is countable. That is,

the set of all discontinuous points of f is countable [see Thm 1-10, Spivak].
Thus f is integrable [see Thm 3-8, Spivak].

4 (i) Let A be a closed subset of Rn and let U be an open subset of Rn with
A ⊂ U.
Let U1 = U,U2 = Rn \ A, and let O = {U1, U2}. Then O forms an open
cover for Rn. Now from [Thm 3-11, Spivak] there is a collection Φ of C∞

functions φ defined on Rn satisfying
(a) For each x ∈ Rn we have 0 ≤ φ(x) ≤ 1
(b) For each x ∈ Rn there is an open set V containing x such that all but

finitely many φ ∈ Φ are ) on V
(c) For each x ∈ Rn we have

∑
φ∈Φ

φ = 1

(d) For each φ ∈ Φ there is an open set U in O such that φ = 0 outside of
some closed set contained in U

Consider
f =

∑
φ∈Φ,

φ=0 on some Kc

K⊂U1, closed

φ

Then using (b) we can see that f is C∞ and we have f(x) = 1 for all x ∈ A
and f(x) = 0 for all x ∈ U c from (c) and (d).

4 (ii) Let A = {(x, y) ∈ R2 : 1 ≤ xy ≤ 2, x ≤ y ≤ 2x}

Area of A = 2


1∫

1√
2

2x∫
1
x

dydx+

√
2∫

1

2
x∫
x

dydx



= 2


1∫

1√
2

(
2x− 1

x

)
dx+

√
2∫

1

(
2

x
− x
)
dx


= 2((x2 − log x)|11√

2

+ (2 log x− x2

2
)|
√

2
1 )

= 2 log
√

2
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