ANSWERS TO ANALYSIS III, MID-SEMESTERAL
EXAMINATION, 2008, BMATH 2ND YEAR

1 (i) Given that f: U — R is differentiable at z = (a,b) € U C R%.
Define g : R — R? by g(t) = (a +t,b+sint) for all t € R.

Then ¢(0) = (a,b) = =, g is differentiable at 0 and ¢’(0) = [i
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Now

fla+ h,b+sinh) — f(a,b) ~ lim fog(h)— fog(0)

%IL% h h—0 h
= (fo9)'(0)
= f'(9(0)) o ¢’(0) by Chain Rule
= f'(x) 0 g'(0)
[Dy f Dy f(z)] B Eg;]

- (D) Daf(@)] |}
~ Dif(@) + Daf (@)

where D, f(z) is the 7 th partial derivative of f at x = (a,b)

1 (ii) Let n > 2 and U C R™ be an open set and f : U — R" be a C! map
satisfying || f(z)|| =1 for all x € U.
We shall prove that the Jacobian Matrix D f(x) of f at any point x is not
invertible.

Given that ||f(z )H2 ( 12+ fo(z)2 + o+ fulx ) =1
a(f1(x)* +fz<w) bt @Y ) forall i = 1,2, .

:*2f1( )afl(””)+2f( )2LE) 4 of(a )8’;32”“ —0Oforalli=1,2,..,n

rofi(z)
8:81'
Af2(x)
= [filz) folz) . fal2)] 8?“ =0foralli=1,2,...n
O ()
L 6351
Af1(x) Ofi(z)
ox ox
Oblr) .. 2k
:[fl(x) fa(z) ... fn(xﬂ ":“ N f" :[O o --- 0]
Bfn'(z) Bf;(z)
L Oz; 0Ty,

That is [fi(z) fo(z) ... fn(x)]Df(x):[O 0 - 0]
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2 (i)

f1 (37) 0
f2 (Z‘) 0
= Df(x)T . =|.| forall x € R
fn(2) 0
Note that || f(z)|| = 1 implies that f(z) is a non-zero vector for all z € R™.

Therefore Df(x)? f(z) = 0 implies that Df(x) is not invertible for all
z e R".
Let n > 2. Define g : R*~! — R by

g(ylay% ~~~7yn71) = f(07y17y27 ~~~7yn71) for all (ylquv ~~-7yn71) € Rn_l

2 (ii)

Fix (a2, a3, ...,a,) € R"~! and define h : R — R by
h(z) = f(x,a9,as,...,ay,) for all x € R.

Then h'(x) = g—gfl(x,ag,ag,...,an) for all z € R, where g—i is the i th
partial derivative of f. It is given that h’(x) = 0. Therefore by Fundamental

Theorem of Calculus, for all b > a we have
b
h(b) — h(a) = /h/(l')dl‘ =0
Thus f(a,as,as,...,an) = h(a) = h(b) = f(b,as,as,...,ay,) for all a,b € R.
This is true for all fixed (as,as, ...,a,) € R""1. This shows that
g(z2, 23, ..., xpn) = f(x1, 29, ..., xy,) for all (1, x9,...,2,) € R".

Now note that % = aaiji -, where g—;l is the ¢ th partial derivative of g.

Hence clearly g is C*! as f is.

Let n > 2 and f: R™ — R be a C! function. Then f is continuous on R”.
Assume that f is injective on R".

Then since f is injective and continuous f(R™) is a non-trivial interval in
R. Let ¢ be an interior point in f(R™). Then there exists a unique y € R
such that f(y) = c. Now note that R™\ {y} is connected and f is continuous
on R™\ {y}. But f(R™)\ {c} is disconnected in R. This is a contradiction.
Hence f can not be injective.

Let f : [a,b] — R be a bounded monotonically non-decreasing function.
Let = € [a,b]. For h > 0 let

Qn(f,z) =sup{f(y) — f(2) 19,2z € [a,0] N (z — h,z + h)}
O(fvx) = }ILIL%Qh(.ﬂx)

Clearly Qp(f,2) < Qp/(f,z) if h < k' and hence o(f,z) < Qp(f,z) for all
h > 0. Thus since f is monotonically non-decreasing we can observe the
following for o(f, z):
Case 1: a <z <b.
We have o(f,x) < f(z) — f(y) for any y, z € [a,b] with y < < z.
Case 2: z=a
We have o(f,z) < f(y) — f(z) for any y with a <y <b
Case 3: z =10
We have o(f,z) < f(b) — f(y) for any y with a <y < b.
Without loss of generality assume that z; < z2 < ... < z,. Choose a;’s
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3 (i)

4 (ii)

suchthat a = ap <21 < a1 <Ta < as <23 <..<x, <a, =b>b. Therefore
from the above observations o(f, z;) < f(a;) — f(a;—1). Thus
Zo(f,ib"i) < Zf(%) = flai-1) = f(b) — f(a)
i=1 i=1

Let f : [a,b] — R be a bounded monotonically non-decreasing function.
Let S, := {z € [a,b] : o(f,z) > 1}. Using part (i) we can see that S, is a
finite set. Thus {x € [a,b] : o(f,z) > 0} = UZS1S,, is countable. That is,
the set of all discontinuous points of f is countable [see Thm 1-10, Spivak].
Thus f is integrable [see Thm 3-8, Spivak].
Let A be a closed subset of R™ and let U be an open subset of R™ with
AcCU
Let Uy = U, Uy = R™"\ A, and let O = {U;,Us}. Then O forms an open
cover for R". Now from [Thm 3-11, Spivak] there is a collection ® of C*>
functions ¢ defined on R™ satisfying
(a) For each z € R™ we have 0 < ¢(x) <1
(b) For each z € R™ there is an open set V' containing x such that all but

finitely many ¢ € ® are ) on V

(c) For each z € R™ we have ) ¢ =1
oD
(d) For each ¢ € ® there is an open set U in O such that ¢ = 0 outside of

some closed set contained in U

Consider
f= > ¢

¢ED,
#»=0 on some K¢
KCU,, closed

Then using (b) we can see that f is C° and we have f(z) =1forallz € A
and f(z) =0 for all z € U° from (c) and (d).
Let A= {(z,y) €R*:1 <2y <2,z <y <2z}

£l

2z
/ dydz

/dydm +

<2x—1) dx + (2—3:) dx
T T
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= 2((2® —log )|, + (2logz — —)|Y?)
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