ANSWERS TO ANALYSIS III, MID-SEMESTERAL EXAMINATION, 2008, B.MATH 2ND YEAR

1 (i) Given that $f: U \to \mathbb{R}$ is differentiable at $x = (a, b) \in U \subseteq \mathbb{R}^2$. Define $g: \mathbb{R} \to \mathbb{R}^2$ by $g(t) = (a + t, b + \sin t)$ for all $t \in \mathbb{R}$.

Then g(0) = (a, b) = x, g is differentiable at 0 and $g'(0) = \begin{bmatrix} g'_1(0) \\ g'_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Now

$$\lim_{h \to 0} \frac{f(a+h, b+\sin h) - f(a, b)}{h} = \lim_{h \to 0} \frac{f \circ g(h) - f \circ g(0)}{h}$$

= $(f \circ g)'(0)$
= $f'(g(0)) \circ g'(0)$ by Chain Rule
= $f'(x) \circ g'(0)$
= $[D_1 f(x) \quad D_2 f(x)] \begin{bmatrix} g'_1(0) \\ g'_2(0) \end{bmatrix}$
= $[D_1 f(x) \quad D_2 f(x)] \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
= $D_1 f(x) + D_2 f(x)$

where $D_i f(x)$ is the *i* th partial derivative of *f* at x = (a, b)1 (ii) Let $n \ge 2$ and $U \subset \mathbb{R}^n$ be an open set and $f : U \to \mathbb{R}^n$ be a C^1 map satisfying ||f(x)|| = 1 for all $x \in U$. We shall prove that the Jacobian Matrix Df(x) of f at any point x is not invertible

Given that
$$||f(x)||^2 = f_1(x)^2 + f_2(x)^2 + \dots + f_n(x)^2 = 1.$$

$$\Rightarrow \frac{\partial (f_1(x)^2 + f_2(x)^2 + \dots + f_n(x)^2)}{\partial x_i} = 0 \text{ for all } i = 1, 2, \dots, n.$$

$$\Rightarrow 2f_1(x) \frac{\partial f_1(x)}{\partial x_i} + 2f_2(x) \frac{\partial f_2(x)}{\partial x_i} + \dots + 2f_n(x) \frac{\partial f_n(x)}{\partial x_i} = 0 \text{ for all } i = 1, 2, \dots, n.$$

$$\Rightarrow \left[f_1(x) \quad f_2(x) \quad \dots \quad f_n(x) \right] \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_i} \\ \frac{\partial f_2(x)}{\partial x_i} \\ \vdots \\ \frac{\partial f_n(x)}{\partial x_i} \end{bmatrix} = 0 \text{ for all } i = 1, 2, \dots, n.$$

$$\Rightarrow \left[f_1(x) \quad f_2(x) \quad \dots \quad f_n(x) \right] \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_i} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_i} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(x)}{\partial x_i} & \dots & \frac{\partial f_n(x)}{\partial x_n} \end{bmatrix} = \left[0 \quad 0 \quad \dots \quad 0 \right]$$
That is $\left[f_1(x) \quad f_2(x) \quad \dots \quad f_n(x) \right] \begin{bmatrix} 1 \end{bmatrix}$

$$\Rightarrow Df(x)^T \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \text{ for all } x \in \mathbb{R}^n$$

Note that ||f(x)|| = 1 implies that f(x) is a non-zero vector for all $x \in \mathbb{R}^n$. Therefore $Df(x)^T f(x) = 0$ implies that Df(x) is not invertible for all $x \in \mathbb{R}^n$.

- 2 (i) Let $n \ge 2$. Define $g : \mathbb{R}^{n-1} \to \mathbb{R}$ by
 - $g(y_1, y_2, ..., y_{n-1}) = f(0, y_1, y_2, ..., y_{n-1})$ for all $(y_1, y_2, ..., y_{n-1}) \in \mathbb{R}^{n-1}$

Fix $(a_2, a_3, ..., a_n) \in \mathbb{R}^{n-1}$ and define $h : \mathbb{R} \to \mathbb{R}$ by

 $h(x) = f(x, a_2, a_3, \dots, a_n)$ for all $x \in \mathbb{R}$.

Then $h'(x) = \frac{\partial f}{\partial x_1}(x, a_2, a_3, ..., a_n)$ for all $x \in \mathbb{R}$, where $\frac{\partial f}{\partial x_i}$ is the *i* th partial derivative of *f*. It is given that $h'(x) \equiv 0$. Therefore by Fundamental Theorem of Calculus, for all b > a we have

$$h(b) - h(a) = \int_{a}^{b} h'(x)dx = 0$$

Thus $f(a, a_2, a_3, ..., a_n) = h(a) = h(b) = f(b, a_2, a_3, ..., a_n)$ for all $a, b \in \mathbb{R}$. This is true for all fixed $(a_2, a_3, ..., a_n) \in \mathbb{R}^{n-1}$. This shows that

 $g(x_2, x_3, ..., x_n) = f(x_1, x_2, ..., x_n)$ for all $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

Now note that $\frac{\partial g}{\partial y_i} = \frac{\partial f}{\partial x_{i+1}}$, where $\frac{\partial g}{\partial y_1}$ is the *i* th partial derivative of *g*. Hence clearly *g* is C^1 as *f* is.

- 2 (ii) Let $n \ge 2$ and $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. Then f is continuous on \mathbb{R}^n . Assume that f is injective on \mathbb{R}^n . Then since f is injective and continuous $f(\mathbb{R}^n)$ is a non-trivial interval in \mathbb{R} . Let c be an interior point in $f(\mathbb{R}^n)$. Then there exists a unique $y \in \mathbb{R}^n$ such that f(y) = c. Now note that $\mathbb{R}^n \setminus \{y\}$ is connected and f is continuous on $\mathbb{R}^n \setminus \{y\}$. But $f(\mathbb{R}^n) \setminus \{c\}$ is disconnected in \mathbb{R} . This is a contradiction. Hence f can not be injective.
- 3 (i) Let $f : [a, b] \to \mathbb{R}$ be a bounded monotonically non-decreasing function. Let $x \in [a, b]$. For h > 0 let

$$\Omega_h(f, x) = \sup\{f(y) - f(z) : y, z \in [a, b] \cap (x - h, x + h)\}$$
$$o(f, x) = \lim_{h \to 0} \Omega_h(f, x)$$

Clearly $\Omega_h(f,x) \leq \Omega_{h'}(f,x)$ if $h \leq h'$ and hence $o(f,x) \leq \Omega_h(f,x)$ for all h > 0. Thus since f is monotonically non-decreasing we can observe the following for o(f,x):

Case 1: a < x < b.

We have $o(f, x) \leq f(z) - f(y)$ for any $y, z \in [a, b]$ with y < x < z. Case 2: x = a

We have $o(f, x) \le f(y) - f(x)$ for any y with $a < y \le b$ Case 3: x = b

We have $o(f, x) \le f(b) - f(y)$ for any y with $a \le y < b$.

Without loss of generality assume that $x_1 < x_2 < ... < x_n$. Choose a_i 's

such that $a = a_0 \le x_1 < a_1 < x_2 < a_2 < x_3 < \dots < x_n \le a_n = b$. Therefore from the above observations $o(f, x_i) \le f(a_i) - f(a_{i-1})$. Thus

$$\sum_{i=1}^{n} o(f, x_i) \le \sum_{i=1}^{n} f(a_i) - f(a_{i-1}) = f(b) - f(a)$$

- 3 (ii) Let $f : [a, b] \to \mathbb{R}$ be a bounded monotonically non-decreasing function. Let $S_n := \{x \in [a, b] : o(f, x) > \frac{1}{n}\}$. Using part (i) we can see that S_n is a finite set. Thus $\{x \in [a, b] : o(f, x) > 0\} = \bigcup_{\infty}^{n=1} S_n$ is countable. That is, the set of all discontinuous points of f is countable [see Thm 1-10, Spivak]. Thus f is integrable [see Thm 3-8, Spivak].
- 4 (i) Let A be a closed subset of \mathbb{R}^n and let U be an open subset of \mathbb{R}^n with $A \subset U$.

Let $U_1 = U, U_2 = \mathbb{R}^n \setminus A$, and let $\mathcal{O} = \{U_1, U_2\}$. Then \mathcal{O} forms an open cover for \mathbb{R}^n . Now from [Thm 3-11, Spivak] there is a collection Φ of C^{∞} functions ϕ defined on \mathbb{R}^n satisfying

- (a) For each $x \in \mathbb{R}^n$ we have $0 \le \phi(x) \le 1$
- (b) For each $x\in\mathbb{R}^n$ there is an open set V containing x such that all but finitely many $\phi\in\Phi$ are) on V
- (c) For each $x \in \mathbb{R}^n$ we have $\sum_{\phi \in \Phi} \phi = 1$
- (d) For each $\phi \in \Phi$ there is an open set U in O such that $\phi = 0$ outside of some closed set contained in U

Consider

$$f = \sum_{\substack{\phi \in \Phi, \\ \phi = 0 \text{ on some } K^c \\ K \subset U_1, \text{ closed}}} \phi$$

Then using (b) we can see that f is C^{∞} and we have f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \in U^c$ from (c) and (d).

4 (ii) Let $A = \{(x, y) \in \mathbb{R}^2 : 1 \le xy \le 2, x \le y \le 2x\}$

Area of
$$A = 2 \left(\int_{\frac{1}{\sqrt{2}}}^{1} \int_{\frac{1}{x}}^{2x} dy dx + \int_{1}^{\sqrt{2}} \int_{x}^{\frac{2}{x}} dy dx \right)$$

$$= 2 \left(\int_{\frac{1}{\sqrt{2}}}^{1} \left(2x - \frac{1}{x} \right) dx + \int_{1}^{\sqrt{2}} \left(\frac{2}{x} - x \right) dx \right)$$
$$= 2((x^2 - \log x)|_{\frac{1}{\sqrt{2}}}^{1} + (2\log x - \frac{x^2}{2})|_{1}^{\sqrt{2}})$$
$$= 2\log\sqrt{2}$$

References

[1] Michael Spivak: Calculus on Manifolds, Perseus Books (1965)